
Adaptive Object Modelling
using the

.NET Framework

Theo Crous, Theo Danzfuss
Computer Science Department

University of Pretoria
Pretoria 0002
South Africa

{tcrous, tdanzfuss}@cs.up.ac.za

Andreas Liebenberg, Alwyn Moolman
E-Logics (Pty) Ltd

Unit L12 Enterprise Building
Innovation Hub
Pretoria 0002
South Africa

{andreas.liebenberg, alwyn.moolman}@elogics.co.za

ABSTRACT
In an ever-changing business environment, business models and rules have migrated from compiled source code
to external metadata. This paradigm better known as adaptive object modelling (AOM) empowers domain
experts to take control over application implementations, and allows them to change an application’s business
model as the business evolves. The problem with the adaptive object modelling approach is that it only caters for
an evolving business model and ignores the effects of expanding functional requirements. This paper presents
the Expandable Software Infrastructure (ESI), an amalgamation of adaptive object modelling and component-
based software development. Unlike other adaptive object modelling implementations where metadata have only
been used to describe the data and the executing domain, the ESI takes metadata further and utilizes it to
describe the data, domain, behaviour and components - providing us with a truly expandable AOM. We
highlight how the relatively complex task of adaptive object modelling can be executed simply and elegantly
using the Microsoft .NET Framework and further describe how core .NET technologies such as ADO.NET,
.NET Compact Framework, reflection and remoting sculpted the architecture of the ESI. We conclude with the
notion of moving towards a standardized, intelligent architecture that executes on multiple platforms.

Keywords
Adaptive Object-Model, Adaptive Systems, Dynamic Object-Model, Reflection, Reflective Systems Meta-
Modelling, Meta-Architectures, Metadata, Domain Specific Language, Generative Programming.

1. INTRODUCTION

Business needs have developed beyond the capacity
of statically structured systems that are unable or
unwilling to adapt to changing business
requirements.

These requirements for flexible systems can briefly
be described as:

- Runtime configurability

- Adaptability

- Extendibility

- Intuitive configuration

Existing approaches to flexible systems have all
excelled in at least one of the above mentioned
objectives, but none have successfully adhered to all
4 requirements.

We present the Expandable Software Infrastructure
(ESI) developed by E-Logics (Pty) Ltd: an adaptive
object modelling system that makes use of various
techniques found in configurable and/or flexible
systems and component-based software
development. The ESI’s goal is to realize all 4
requirements through the use of metadata and can be
briefly described as a metadata-driven component-
based framework.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

The main contribution of our work is to make an
effective use of the .NET Framework to successfully
design and develop a flexible system, the
Expandable Software Infrastructure (ESI) that
conforms to all four above mentioned requirements.
We also demonstrate how the ESI was influenced by
the .NET framework and focus on the role of .NET
Technologies such as ADO.NET, .NET Compact
Framework, reflection and remoting in the ESI.

This paper is structured as follows: Section 2
describes the ESI and gives an overview of the high
level architecture and metadata structure and a
layered view of the ESI. Section 3 presents an in-
depth look at the physical architecture of the ESI and
how .NET sculpted the architecture. Section 4
scrutinizes existing approaches to flexible systems
while Section 5 details some future work draws
conclusions.

2. THE ESI

The Expandable Software Infrastructure (ESI) is
both a software component infrastructure and an
adaptive object model interpreter. Development of
the ESI was driven by various business
requirements. These requirements are to:

- Develop changeable systems

- Reduce development time and cost

- Intuitively develop systems

- Develop flexible systems

- Develop vendor independent systems

- Reuse common software components

Essentially the ESI is an interpretive layer wrapped
around traditional relational database systems, which
allows domain experts to build, configure and deploy
systems without the need to rewrite or recompile
code. The ESI allows domain experts to concentrate
on domain modelling, system configuration and
maintenance while software developers concentrate
on technical issues.

The ESI owes its flexibility to the extensive use of
metadata. Metadata is used to describe the domain
model, software components, component variability
and behaviour. This implies that most changes in the
business environment can be catered for by making
changes to metadata. Should the need for new
functionalities arise, a component that sufficiently
fulfils the requirements must be purchased or
developed and then described in the metadata. The
component’s variability refers to those parameters of

the component that will be variable for different
domains. It is then the responsibility of a domain
expert to populate the variability for the executing
domain.

The ESI provides a range of tools to assist users with
the tedious task of populating metadata. The most
notable of these tools is the ESI management
console. The management console provides an UML
[13] modelling tool that users can use to describe the
domain. The management console also enables users
to extend the ESI by describing new components and
their variability.

ESI Metadata
The ESI metadata is a self-describing object model
that can be divided into three layers, as illustrated in
figure 1.

The Core is used to describe those entities that are
critical to the execution of any ESI implementation.
Extended metadata are those data that describe the
pluggable components while domain metadata is
specific for a given implementation.

The core ESI object model is loosely based on
design patterns found in classic AOM
implementations [2] namely:

- TypeObject Pattern

- Entity and EntityType Pattern

- Property Pattern

- Strategy Pattern

The main differences between the core ESI object
model and these classic AOM patterns are that the
ESI architecture is split into a functional and a
physical level and the ESI metadata is self-
describing.
The advantages gained by this architecture are:

- The physical relational database model can
differ from the functional object model.

Figure 1. ESI metadata

- Technical details stored in the physical
layer can be hidden from domain experts,
providing a more intuitive model.

- One functional model can easily be
migrated to a different physical
implementation.

- The core of the ESI can be extended.

Figure 2 presents a graphical representation of the
core ESI object model.

Changing core metadata results in a new ESI
assembly to be built. This assembly is generated by
interpreting the stored metadata and generating a
new dynamic link library (dll) using the reflection
and emit libraries found in .NET. The newly built
assembly now forms the base of all ESI systems.

3. ESI AND THE .NET FRAMEWORK

Before the acceptance of component-based
frameworks such as J2EE and .NET, implementing a
system such as the ESI was an extremely daunting
and often impractical task. The following advantages
of the .NET Framework [10, 14] made it the perfect
candidate for the ESI:

- Low learning curve

- Ease of application deployment and
maintenance

- Comprehensive class library
- Managed Code
- Framework support

The decision to choose the .NET framework was not
only based on technical merit, but also on non-

technical factors such as available resources and user
expectations.

The architecture of the ESI was sculpted by the
.NET Framework. ADO.NET, remoting, reflection
and the .NET Compact Framework were the defining
technologies in the structure of the ESI.

ADO.NET and especially datasets enabled the
implementation of a data abstraction layer that is
vendor-independent and can also treat text-based
data stores such as XML and CSV files similar to
relational databases. It also provided the ability to
create an efficient client-side data cache that reduces
network traffic and improves overall system
performance.

The .NET remoting infrastructure enables the ESI to
execute in a distributed environment over either TCP
or HTTP. This permits the ESI to provide rich client
interfaces that can retrieve data over the internet and
even through firewalls.

.NET Reflection is used to extend the ESI at run
time. New types and operations can be added to the
ESI by defining them in the metadata. The ESI then
uses reflection to load the type at runtime. The ESI
also makes use of the .NET emit library to allow for
the core ESI to be extended and recompiled by
simply altering the metadata.

The .NET Compact Framework allows the ESI to
execute on mobile devices such as PDA’s. This
extends the range of applications that can be
executed using the ESI.

The ESI allows multiple deployment scenarios of
which the most common is essentially a distributed
client-server architecture as highlighted in figure 3.

Figure 2. Core ESI Architecture

Figure 3. ESI deployment scenario

As seen in Figure 4 the ESI can be broken into nine
distinct components. Each of these components
leverages the .NET framework to reach its goal.

1. The Data Abstraction Layer: The data
abstraction layer is responsible for
performing basic Create, Read, Update and
Delete commands (CRUD) on all the
supported data sources.

2. Meta Interpretation Layer: The metadata
interpretation layer uses the data abstraction
layer to load and save the metadata.
Metadata are converted into runtime classes
through the reflection API, and all classes
built on top of the interpretation layer will
use these classes as if they were compiled at
design time.

3. Remote Server Interface: The remote server
interface is responsible for managing
remote client connections and executing all
server side operations such as data retrieval.
The Remote Server Interface uses the .NET
remoting infrastructure to provide basic
remoting functions such as object
serialization.

4. Client Data Cache: The client data cache
reduces network traffic and improves
response time, by caching results in a
disconnected data set.

5. Client Data Service: The client data service
is responsible for executing all client-side

operations and managing access to the local
data cache.

6. Client View: The client view is a thin
wrapper around a .NET dataset that presents
users (typically GUI components) with a
meta interpreted view on the data. Without
a client view user interface components
only see a dataset, with the client view user
interface components see a collection of
metadata objects.

7. Remote Data Service: The remote data
service is used by data services to
communicate remotely with each other.

8. UI Controls: User interface controls
provide users a view on the data and a
mechanism to interact with ESI clients.
Currently the ESI contains two sets of UI
controls; Windows Forms controls and
Mobile Controls. Windows Forms controls
are extensions to .NET provided controls
and allow for ESI-specific functionalities.
Mobile controls are UI controls that execute
on the .NET Compact Framework and often
implement a subset of the functionalities
provided by the Windows Forms version of
the controls.

9. Synchronization: Synchronization is used to
keep secondary and mobile servers in sync
with the primary ESI server.

4. COMPARISON WITH EXISTING
APROACHES

We categorize existing flexible system approaches
into the following categories:

- Configurable Systems
- Adaptive Object Modelling
- Component-based Software Development

Configurable Systems
A configurable system extends the traditional notion
of a system by introducing a fixed set of parameters
external to the system. These parameters can be
modified to alter some runtime attributes or
properties of a system. The Gandiva software
development system [11] can be seen as an example
of a configurable system.

Configurable systems are limited by a fixed set of
parameters which are defined at compile time.
Therefore the dimensions of configurability are fixed
and the scope for adapting is limited.

Figure 4. ESI layered architecture

The ESI relates to configurable systems in that it
allows users to configure the system using external
attributes. ESI differs from configurable systems by
allowing the definition of variability in metadata –
enabling the extension of configurable parameters.

Adaptive Object Modelling
An adaptive object model (AOM) [14] is an object
model where the domain representation is interpreted
at runtime and can be altered or changed with
immediate effect [1]. The adaptive model defines
mechanisms to describe entities, attributes and
relationships, as well as mechanisms to interpret the
domain model and execute business rules.
Browsersoft’s eQ! Foundation [15] is a good
example of an industry stable AOM implementation
written in Java.

The biggest shortfall of the AOM approach is its
internal structures are difficult to extend and
maintain. This results in the situation where business
requirements can easily be adapted although the
functional requirements of the system cannot change
easily. We can say AOM systems are adaptive
although not adaptable [4, 5].

In addition to using metadata to describe the domain,
the ESI also utilizes metadata to define software
components, their variability and behavior. This
provides the ESI with information that can be used to
expand the system on a functional level.

Component-based Software Development
In component-based software development, software
products are built on top of component
infrastructures [9]. The component infrastructure
provides a mechanism for business components to be
plugged in and configured to produce a final
software product or system. A software system can
be extended by plugging in new components or
replacing old components. The best known example
of a component infrastructure is probably Enterprise
Java Beans [16].

Although component infrastructures can be easily
extended to provide new functionality, they often
requires writing “glue” code to make the new
functionalities available.

The ESI provides a pluggable component
infrastructure that enables it to expand on a
functional level. Instead of having to write code to
plug the new components into the framework, the
ESI requires the component to be described in
metadata.

Table 1 summarizes which objectives are
successfully met by each flexible system approach.

The ESI is an ideal solution when implementing
systems in a constantly changing environment,
which requires flexible, configurable, intuitive and
adaptable systems.

These systems may span any number of domains,
including: asset management, data warehousing,
geographical information, decision support and
supply chain optimization systems.

5. CONCLUSION AND FUTURE
WORK
Developing an adaptive object modelling system is
not an easy task. Choosing the correct technology is
critical to simplifying this undertaking. The .NET
Framework enabled a small team of software
developers to conquer this mammoth task within
reasonable time. This success can be broadly
credited to .NET’s low learning curve, the
comprehensive class library, ease of deployment,
managed code and excellent support.
The ESI overcomes the shortcomings of classic
adaptive object modelling systems by introducing
aspects from component-based software
development. Although the infrastructure is currently
being used by a number of industry applications
there are a few shortcomings:

- It is limited to the Microsoft Windows and
Windows CE platform.

- No web or thin client interface exists.
- Does not conform to standards, therefore it

is difficult to extend the ESI with a
component that was not developed for the
ESI.

 Runtime
configurable

Adaptive Extendible Intuitive

Configurable
Systems

D

U

U

U

Adaptable
Object
Modelling

D

D

U

D

Component-
based Software
Development

U

D

D

U

Expandable
Software
Infrastructure

D

D

D

D

Table 1. ESI comparison

- The ESI currently lacks version control and
change management.

Apart from the shortcomings mentioned above we
would like to see the ESI move towards an
intelligent or adaptable architecture [9]. The simplest
example of resource adaptation is that of network
bandwidth. The system must detect low bandwidths
and modify caching settings and request processing
accordingly. Another goal for the ESI would be to
make it platform independent. With recent
developments in the ROTOR and MONO projects,
we would like to see the ESI execute on one of these
frameworks, thus enabling cross-platform execution.

6. ACKNOWLEDGMENTS

The authors would like to thanks E-Logics (Pty) Ltd
for allowing them to work on the ESI and for
funding the project. Also a word of thanks to Prof.
Judith Bishop, Department Computer Science,
University of Pretoria, for her guidance and support.

7. REFERENCES

[1] J.W. Yoder, B. Foote, Metadata and Active

Object-Models. 1998.

[2] J.W. Yoder et al. Architecture and Design of

Adaptive Object-Models. ACM SIG-PLAN
Notices 36, No.12, pp.50-60, 2001.

[3] R. Reza et al. Language support for Adaptive

Object-Models using Metaclasses. ESUG
Conference, 2004.

[4] A. Dantas et al. Using Aspects to Make Adaptive

Object-Models Adaptive. ECOOP ‘04 Workshop
on Reflection, AOP, and Meta-Data for software
evolution (RAM-SE), pp.9-20, 2004.

[5] K. Lieberherr, Workshop on Adaptable and

Adaptive Software. Addendum to the Proceedings
of the 10th annual OOPSLA, ACM Press, pp.149-
154, 1995.

[6] J. van Gurp, J. Bosch, M. Svahnberg. On the

Notion of Variability in Software Product Lines.
In Proceedings of the working IEEE/IFIP

conference on Software Architecture
(WICSA'01), 2001.

[7] L. Baum, M. Becker. Generic Components to

Foster Reuse. System Software Research Group,
University of Kaiserslautern, 2001.

[8] C.W. Young, M. Young, Deploying solutions

with .NET Enterprise Servers. ISBN: 0-471-
23594-6. Wiley Publishers, 2003.

[9] R. Allen , R. Douence, D. Garlan, Specifying and

Analyzing Dynamic Software Architectures.
Lecture Notes in Computer Science, Vol. 1382,
pp.21, 1998.

[10]G. Heineman, W. Councill, Component-Based

software engineering. Putting the pieces together.
ISBN: 0-201-70485-4. Addison Wesley, 2001.

[11] M. Stuart, C. Wheather, C. Mark, The Design

and Implementation of a Framework for
Configurable Software. Proceedings of the 3rd
International Conference on Configurable
Distributed Systems (ICCDS ‘96)

8. WEB REFERENCES

[12] S. Pratschner. Simplifying Deployment and

Solving DLL Hell with the .NET Framework.
http://msdn.microsoft.com, November 2001.

[13] Unified Modelling Language.

http://www.uml.org, January 2005.

[14] MetaData and Adaptive Object-Model Pages.

http://www.adaptiveobjectmodel.com, January
2005.

[15] The eQ! Foundation.
 http://www.browsersoft.com/, December 2004

[16] SunMicrosystems. J2EE 1.3 specification.

URL:http://java.sun.com/j2ee/download.html,
July 2001.

